Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Mol Biol Rep ; 48(1): 677-689, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33442829

ABSTRACT

The vertebrate mitochondrial genome is typically circular molecules made up of 14,000 to 16,000 bp, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (12 s rRNA and 16 s rRNA) and a control region. Compared with nuclear DNA, mitochondrial DNA has a higher mutation rate, so it is one of the most effective and reliable molecular markers in fish phylogeny. Macrotocinclus affinis was the only species in Macrotocinclus (it was classified as Otocinclus in the past) and currently lacks genetic information. Most of the current researches are based on the mitochondrial Cytb gene and RAG1 and RAG2 nuclear genes to study the phylogenetic analysis of Siluriformes. So, the study provides the characteristic features of the Macrotocinclus affinis mitochondrial genome and this is the first time that the phylogenetic relationship of Siluriformes has been reconstructed based on COI. We aimed to sequence the entire mitochondrial genome of Macrotocinclus affinis using conventional PCR techniques and to clarify its phylogenetic status in Siluriformes by using the COI sequence of mitochondria. In this study, we sequenced the whole mitochondrial genome of this species yielding a 16,632 bp circular assembly composed of the typical vertebrate mitochondrial features. It contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a putative control region, and one origin of replication on the light-strand. The overall base composition includes A (30.07%), T (24.43%), C (29.43%) and G (16.01%). The genome composition is A + T biased (54.5%), and exhibits AT-skew (0.1036) and GC-skew (-0.2962). Moreover, the 13 PCGs encode 3850 amino acids in total. The result of the phylogenetic tree supports Macrotocinclus affinis has a closest relationship with Otocinclus cf. hoppei far. These results will help to understand the characteristics of the mitochondrial genome of Macrotocinclus affinis and provide molecular basis for the evolutionary relationship of Loricariidae.


Subject(s)
Catfishes/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Mitochondria/genetics , Open Reading Frames , Animals , Base Composition , Catfishes/classification , Chromosome Mapping , DNA, Circular/genetics , Genome Size , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Transfer/classification , RNA, Transfer/genetics , Whole Genome Sequencing
2.
Nucleic Acids Res ; 49(D1): D65-D70, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33010163

ABSTRACT

RNA endowed with both protein-coding and noncoding functions is referred to as 'dual-function RNA', 'binary functional RNA (bifunctional RNA)' or 'cncRNA (coding and noncoding RNA)'. Recently, an increasing number of cncRNAs have been identified, including both translated ncRNAs (ncRNAs with coding functions) and untranslated mRNAs (mRNAs with noncoding functions). However, an appropriate database for storing and organizing cncRNAs is still lacking. Here, we developed cncRNAdb, a manually curated database of experimentally supported cncRNAs, which aims to provide a resource for efficient manipulation, browsing and analysis of cncRNAs. The current version of cncRNAdb documents about 2600 manually curated entries of cncRNA functions with experimental evidence, involving more than 2,000 RNAs (including over 1300 translated ncRNAs and over 600 untranslated mRNAs) across over 20 species. In summary, we believe that cncRNAdb will help elucidate the functions and mechanisms of cncRNAs and develop new prediction methods. The database is available at http://www.rna-society.org/cncrnadb/.


Subject(s)
Databases, Nucleic Acid/organization & administration , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Ribosomal/genetics , RNA, Small Interfering/genetics , RNA, Transfer/genetics , 3' Untranslated Regions , 5' Untranslated Regions , Animals , Drosophila melanogaster/genetics , Humans , Mice , MicroRNAs/classification , Pan troglodytes/genetics , RNA, Circular/classification , RNA, Long Noncoding/classification , RNA, Messenger/classification , RNA, Ribosomal/classification , RNA, Small Interfering/classification , RNA, Transfer/classification , Software , Zebrafish/genetics
3.
PLoS One ; 15(10): e0240093, 2020.
Article in English | MEDLINE | ID: mdl-33031481

ABSTRACT

Flowers produce an array of nutrient-rich exudates in which microbes can thrive, making them hotspots for microbial abundance and diversity. During a diversity study of yeasts inhabiting the flowers of Metrosideros polymorpha (Myrtaceae) in the Hawai'i Volcanoes National Park (HI, USA), five isolates were found to represent two novel species. Morphological and physiological characterization, and sequence analysis of the small subunit ribosomal RNA (rRNA) genes, the D1/D2 domains of the large subunit rRNA genes, the internal transcribed spacer (ITS) regions, and the genes encoding the largest and second largest subunits of the RNA polymerase II (RPB1 and RPB2, respectively), classified both species in the family Metschnikowiaceae, and we propose the names Candida metrosideri pro tempore sp. nov. (JK22T = CBS 16091 = MUCL 57821) and Candida ohialehuae pro tempore sp. nov. (JK58.2T = CBS 16092 = MUCL 57822) for such new taxa. Both novel Candida species form a well-supported subclade in the Metschnikowiaceae containing species associated with insects, flowers, and a few species of clinical importance. The ascosporic state of the novel species was not observed. The two novel yeast species showed elevated minimum inhibitory concentrations to the antifungal drug amphotericin B (>4 µg/mL). The ecology and phylogenetic relationships of C. metrosideri and C. ohialehuae are also discussed.


Subject(s)
Candida/classification , Myrtaceae/microbiology , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida/drug effects , Candida/genetics , Candida/isolation & purification , Drug Resistance, Fungal , Flowers/microbiology , Hawaii , Microbial Sensitivity Tests , Phenotype , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
4.
Mol Phylogenet Evol ; 150: 106861, 2020 09.
Article in English | MEDLINE | ID: mdl-32497832

ABSTRACT

Southeast Asia hosts a rich concentration of biodiversity within multiple biodiversity hotspots. Indochina, a region with remarkably high levels of in situ diversification, possesses five major rivers (Ayeyarwady, Chiang Mai, Mekong, Red, and Salween), several of which coincide with phylogenetic breaks of terrestrial taxa. Draco maculatus possesses a range that stretches across Indochina, which widespread geographic distribution along with potential discrete variation within subspecies alludes to the possibility of this taxon constituting multiple divergent lineages. Using sequence data from three mitochondrial (12S, 16S, and ND2) and three nuclear (BDNF, CMOS, and PNN) genes, we provide the first estimated phylogeny of this hypothesized species complex and examine its phylogeographic architecture with maximum likelihood and Bayes factor delimitation (BFD) approaches. Our results support multiple divergent lineages with phylogenetic breaks coincident with rivers, indicating that river barriers may be contributing to the elevated levels of in situ diversification of Indochina.


Subject(s)
Lizards/classification , Animals , Bayes Theorem , Biodiversity , Brain-Derived Neurotrophic Factor/classification , Brain-Derived Neurotrophic Factor/genetics , Indochina , Lizards/genetics , Mitochondria/genetics , NADH Dehydrogenase/classification , NADH Dehydrogenase/genetics , Phylogeny , Phylogeography , Protein Subunits/classification , Protein Subunits/genetics , RNA, Ribosomal/classification , RNA, Ribosomal/genetics
5.
Mol Phylogenet Evol ; 143: 106688, 2020 02.
Article in English | MEDLINE | ID: mdl-31747540

ABSTRACT

Leeches of the family Erpobdellidae are important members of benthic freshwater environments, where they are voracious predators of other invertebrates and an important source of nutrition for several species of vertebrates. Beset by a lack of reliable diagnostic morphological characters and destructive identification processes, molecular approaches have, in recent years, been employed to illuminate the relationships within this family, and DNA barcoding has been employed for identification purposes. However, an understanding of the levels of genetic variation across the geographic distributions of members of the genus is still lacking. Herein, we sequence the mitochondrial COI locus for 249 newly collected North American individuals, representing 5 species, as well as mitochondrial 12S rDNA, nuclear 18S rDNA, and nuclear 28S rDNA for a select subset of these. Our COI dataset was leveraged to detect potential cryptic species, and to calculate genetic distances as a proxy for the degree of gene flow between populations. Augmented by numerous sequences from GenBank, the multilocus dataset was used to reconstruct a phylogenetic hypothesis for worldwide members of the genus. Beyond corroborating previous overarching phylogenetic frameworks, our results show that an undescribed species that is morphologically and genetically similar to Erpobdella punctata exists in sympatry with this species - the new species has likely been overlooked in previous studies due to its morphological similarity with Erpobdella punctata. Erpobdella bucera is reported from Canada for the first time; and Erpobdella microstoma is newly reported from Saskatchewan and placed in a phylogeny for the first time. Finally, we find evidence for genetic structure in both E. cf. punctata and Erpobdella obscura that is correlated with major river drainage basin boundaries in North America.


Subject(s)
Annelida/genetics , Genetic Variation , Animals , Annelida/classification , Biodiversity , Canada , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Haplotypes , Mitochondria/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics
6.
Sci Rep ; 9(1): 15746, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673057

ABSTRACT

We sequenced and annotated the first complete mitochondrial genome (mitogenome) of Ledra auditura (Hemiptera: Cicadellidae: Ledrinae) and reconstructed phylogenetic relationships among 47 species (including 2 outgroup species) on the basis of 3 datasets using maximum likelihood (ML) and Bayesian inference (BI) analyses. The complete L. auditura mitogenome (length, 16,094 bp) comprises 37 genes [13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs], 1 control region, and 2 long non-coding regions. The first long non-coding region (length, 211 bp) is located between tRNA-I and tRNA-Q and the second region (length, 994 bp) between tRNA-S2 and ND1. All PCGs show ATN (Met/Ile) as their start codon and TAR as their stop codon. Except tRNA-S1 (AGN), which lacks the dihydrouridine arm, all tRNAs can fold into the typical cloverleaf secondary structure. The complete L. auditura mitogenome shows a base composition bias of 76.3% A + T (A = 29.9%, T = 46.4%, G = 13.3%, and C = 10.5%), negative AT skew of -0.22, and positive GC skew of 0.12. In ML and BI analyses, L. auditura was clustered with Evacanthus heimianus (Hemiptera: Cicadellidae: Evacanthinae) with strong branch support.


Subject(s)
Genome, Mitochondrial/genetics , Hemiptera/genetics , Animals , Base Sequence , Bayes Theorem , Codon , Hemiptera/classification , Molecular Sequence Annotation , Nucleic Acid Conformation , Open Reading Frames/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Transfer/classification , RNA, Transfer/genetics , Sequence Analysis, DNA
7.
Mol Phylogenet Evol ; 139: 106565, 2019 10.
Article in English | MEDLINE | ID: mdl-31326515

ABSTRACT

So far, the phylogenetic studies on ciliated protists have mainly based on single locus, the nuclear ribosomal DNA (rDNA). In order to avoid the limitations of single gene/genome trees and to add more data to systematic analyses, information from mitochondrial DNA sequence has been increasingly used in different lineages of ciliates. The systematic relationships in the subclass Scuticociliatia are extremely confused and largely unresolved based on nuclear genes. In the present study, we have characterized 72 new sequences, including 40 mitochondrial cytochrome oxidase c subunit I (COI) sequences, 29 mitochondrial small subunit ribosomal DNA (mtSSU-rDNA) sequences and three nuclear small subunit ribosomal DNA (nSSU-rDNA) sequences from 47 isolates of 44 morphospecies. Phylogenetic analyses based on single gene as well as concatenated data were performed and revealed: (1) compared to mtSSU-rDNA, COI gene reveals more consistent relationships with those of nSSU-rDNA; (2) the secondary structures of mtSSU-rRNA V4 region are predicted and compared in scuticociliates, which can contribute to discrimination of closely related species; (3) neither nuclear nor mitochondrial data support the monophyly of the order Loxocephalida, which may represent some divergent and intermediate lineages between the subclass Scuticociliatia and Hymenostomatia; (4) the assignments of thigmotrichids to the order Pleuronematida and the confused taxon Sulcigera comosa to the genus Histiobalantium are confirmed by mitochondrial genes; (5) both nuclear and mitochondrial data reveal that the species in the family Peniculistomatidae always group in the genus Pleuronema, suggesting that peniculistomatids are more likely evolved from Pleuronema-like ancestors; (6) mitochondrial genes support the monophyly of the order Philasterida, but the relationships among families of the order Philasterida remain controversial due to the discrepancies between their morphological and molecular data.


Subject(s)
Cell Nucleus/genetics , Mitochondria/genetics , Oligohymenophorea/classification , DNA, Ribosomal/chemistry , DNA, Ribosomal/classification , DNA, Ribosomal/genetics , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Nucleic Acid Conformation , Oligohymenophorea/genetics , Phylogeny , RNA, Ribosomal/chemistry , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Sequence Analysis, DNA
8.
Mol Phylogenet Evol ; 139: 106570, 2019 10.
Article in English | MEDLINE | ID: mdl-31349101

ABSTRACT

The subfamily Leptaxinae is included within the highly diverse land snail family Hygromiidae. In the absence of clear diagnostic morphological differences, the subfamily status is currently based solely on molecular information and includes three disjunctly distributed tribes, Leptaxini, Cryptosaccini and Metafruticicolini. However, the phylogenetic relationships among these tribes are not fully resolved and the clustering of some of the genera to the tribes is not statistically supported. To resolve the relationships within Leptaxinae and their position within Hygromiidae, we reconstructed their phylogeny using a multi-locus approach with two mitochondrial genes and eight nuclear markers. The phylogeny was further calibrated and an analysis of ancestral area estimation was carried out to infer the biogeographic history of the group. We elevated Metafruticicolini to subfamily level (Metafruticicolinae) and we restricted Leptaxinae to Cryptosaccini and Leptaxini. The Lusitanian genus Portugala was moved to Leptaxini, previously containing only the Macaronesian genus Leptaxis. Within Cryptosaccini, a new genus strictly confined to the Sierra de la Cabrera (Spain) is described, Fractanella gen. nov. According to our results, Leptaxinae originated in the Early Miocene in the Iberian Peninsula, from which the Macaronesian Islands were colonized. Due to the old split recovered for the divergence between Macaronesian and Iberian lineages, we hypothesize that this colonization may have occurred via the once emerged seamounts located between the archipelagos and the European and African continents, although this could also have occurred through the oldest now emerged islands of Macaronesia. In the Iberian Peninsula, the climatic shift that began during the Middle Miocene, changing progressively from subtropical climate towards the present-day Mediterranean climate, was identified as an important factor shaping the subfamily's diversification, along with Pleistocene climatic fluctuations.


Subject(s)
Snails/classification , Animals , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Mitochondria/genetics , Phylogeny , Phylogeography , RNA, Ribosomal/chemistry , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Snails/genetics , Spain
9.
PLoS One ; 13(12): e0208615, 2018.
Article in English | MEDLINE | ID: mdl-30586406

ABSTRACT

Argasid ticks (Acari: Argasidae) carry and transmit a variety of pathogens of animals and humans, including viruses, bacteria and parasites. There are several studies reporting ixodid ticks (Acari: Ixodidae) and associated tick-borne pathogens in Xinjiang, China. However, little is known about the argasid ticks and argasid tick-associated pathogens in this area. In this study, a total of 3829 adult argasid ticks infesting livestock were collected at 12 sampling sites of 10 counties in the Peripheral Oases, which carry 90% of the livestock and humans population, around the Tarim Basin (southern Xinjiang) from 2013 to 2016. Tick specimens were identified to two species from different genera by morphology and sequences of mitochondrial 16S rRNA and 12S rRNA were derived to confirm the species designation. The results showed that the dominant argasid ticks infesting livestock in southern Xinjiang were Ornithodoros lahorensis (87.86%, 3364/3829). Ornithodoros lahorensis was distributed widely and were collected from 10 counties of southern Xinjiang. Argas japonicus was collected from Xinjiang for the first time. In addition, we screened these ticks for tick-associated pathogens and showed the presence of DNA sequences of Rickettsia spp. of Spotted fever group and Anaplasma spp. in the argasid ticks. This finding suggests the potential role for Argas japonicus as a vector of pathogens to livestock and humans.


Subject(s)
Anaplasma/isolation & purification , Argas/microbiology , Ornithodoros/microbiology , Rickettsia/isolation & purification , Anaplasma/classification , Anaplasma/genetics , Anaplasma/pathogenicity , Animals , Argas/classification , Argas/genetics , Cattle , China , Disease Vectors , Mitochondria/genetics , Ornithodoros/classification , Ornithodoros/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rickettsia/classification , Rickettsia/genetics , Rickettsia/pathogenicity , Sequence Analysis, DNA , Sheep , Tick Infestations/parasitology , Tick Infestations/pathology , Tick Infestations/veterinary
10.
BMC Genomics ; 19(1): 520, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973152

ABSTRACT

BACKGROUND: Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS: Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS: The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.


Subject(s)
Cichlids/parasitology , Mitochondria/genetics , Platyhelminths/genetics , Animals , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , DNA, Protozoan/metabolism , Gene Order , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Mitochondria/classification , Phylogeny , Protozoan Proteins/classification , Protozoan Proteins/genetics , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Sequence Analysis, DNA
11.
PLoS One ; 13(3): e0194672, 2018.
Article in English | MEDLINE | ID: mdl-29584761

ABSTRACT

In the present study, we report five complete and one nearly complete mitochondrial genomes of the Pyraloidea including the first representatives from the Pyralinae (Pyralidae) and Glaphyriinae (Crambidae). We also conduct a comparative analysis of mitogenomic features of this group. Our results show that Pyraloidea mitogenomes evolved under a common trend found in lepidopteran mitogenomes and share several typical genomic characters. The extra conserved blocks are identified in the Pyraloidea control region, and diverse missing codons formed another unique trait within Pyraloidea mitogenome. Furthermore, we reconstruct the mitogenomic phylogeny of Pyraloidea and confirm the phylogenetic position of Pyralinae and Glaphyriinae within the Pyraloidea using BI and ML method based on multiple mitochondrial datasets.


Subject(s)
Genome, Mitochondrial , Moths/genetics , Animals , Codon , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Databases, Genetic , Moths/classification , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Transfer/classification , RNA, Transfer/genetics , Sequence Analysis, DNA
12.
Mol Phylogenet Evol ; 120: 158-169, 2018 03.
Article in English | MEDLINE | ID: mdl-29196205

ABSTRACT

We present different approaches to a multi-locus phylogeny for the Liolaemus elongatus-kriegi group, including almost all species and recognized lineages. We sequenced two mitochondrial and five nuclear gene regions for 123 individuals from 35 taxa, and compared relationships resolved from concatenated and species tree methods. The L. elongatus-kriegi group was inferred as monophyletic in three of the five analyses (concatenated mitochondrial, concatenated mitochondrial + nuclear gene trees, and SVD quartet species tree). The mitochondrial gene tree resolved four haploclades, three corresponding to the previously recognized complexes: L. elongatus, L. kriegi and L. petrophilus complexes, and the L. punmahuida group. The BEAST species tree approach included the L. punmahuida group within the L. kriegi complex, but the SVD quartet method placed it as sister to the L. elongatus-kriegi group. BEAST inferred species of the L. elongatus and L. petrophilus complexes as one clade, while SVDquartet inferred these two complexes as monophyletic (although with no statistical support for the L. petrophilus complex). The species tree approach also included the L. punmahuida group as part of the L. elongatus-kriegi group. Our study provides detailed multilocus phylogenetic hypotheses for the L. elongatus-kriegi group, and we discuss possible reasons for differences in the concatenation and species tree methods.


Subject(s)
Cell Nucleus/genetics , Lizards/classification , Mitochondria/genetics , Animals , Bayes Theorem , Cytochromes b/classification , Cytochromes b/genetics , Cytochromes b/metabolism , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Databases, Genetic , Lizards/genetics , Phylogeny , RNA, Ribosomal/chemistry , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Sequence Analysis, DNA
13.
Mol Phylogenet Evol ; 120: 118-128, 2018 03.
Article in English | MEDLINE | ID: mdl-29196204

ABSTRACT

Biogeographic and evolutionary patterns in the North African portion of the Western Palaearctic are poorly known. A high fraction of undescribed diversity is expected in this region, especially in groups such as reptiles. Here we used mitochondrial (12S, 16S, cytb) and nuclear (pomc, rag2, cmos) markers and morphological data to investigate phyletic diversification and phylogeographical structure in the amphisbaenian Trogonophis wiegmanni endemic to the Maghreb. Phylogenetic and molecular dating analyses based on gene trees and species trees support three deeply divergent lineages of Pliocene origin, two in Morocco and one in central Algeria and Tunisia. Parapatry, reciprocal monophyly, high genetic divergence and limited morphological differentiation between them suggest that these lineages represent independent cryptic taxonomic units. Emerging lines of evidence from this study and from available literature on Maghreb taxa support (i) a major biogeographic break between western and eastern Maghreb and (ii) a role of the Atlas as a biogeographic divide within the western Maghreb (Morocco). The origin of these biogeographic units is probably associated with the evolutionary events prompted by the Late Miocene palaeogeographic setting and later by Plio-Pleistocene climatic changes and their interplay with prominent orographic barriers within North Africa.


Subject(s)
Lizards/classification , Africa, Northern , Amphibian Proteins/classification , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Biodiversity , Biological Evolution , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , DNA-Binding Proteins/classification , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Lizards/genetics , Morocco , Phylogeny , Phylogeography , Pro-Opiomelanocortin/classification , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/classification , RNA, Ribosomal/genetics
14.
Gigascience ; 7(2)2018 02 01.
Article in English | MEDLINE | ID: mdl-29267854

ABSTRACT

Background: Milu, also known as Père David's deer (Elaphurus davidianus), was widely distributed in East Asia but recently experienced a severe bottleneck. Only 18 survived by the end of the 19th century, and the current population of 4500 individuals was propagated from just 11 kept by the 11th British Duke of Bedford. This species is known for its distinguishable appearance, the driving force behind which is still a mystery. To aid efforts to explore these phenomena, we constructed a draft genome of the species. Findings: In total, we generated 321.86 gigabases (Gb) of raw DNA sequence from whole-genome sequencing of a male milu deer using an Illumina HiSeq 2000 platform. Assembly yielded a final genome with a scaffold N50 size of 3.03 megabases (Mb) and a total length of 2.52 Gb. Moreover, we identified 20 125 protein-coding genes and 988.1 Mb of repetitive sequences. In addition, homology-based searches detected 280 rRNA, 1335 miRNA, 1441 snRNA, and 893 tRNA sequences in the milu genome. The divergence time between E. davidianus and Bos taurus was estimated to be about 28.20 million years ago (Mya). We identified 167 species-specific genes and 293 expanded gene families in the milu lineage. Conclusions: We report the first reference genome of milu, which will provide a valuable resource for studying the species' demographic history of severe bottleneck and the genetic mechanism(s) of special phenotypic evolution.


Subject(s)
Biological Evolution , Chromosome Mapping/methods , Deer/genetics , Genome , High-Throughput Nucleotide Sequencing , Animals , Cattle , Deer/classification , Male , MicroRNAs/classification , MicroRNAs/genetics , Open Reading Frames , Phylogeny , Proteins/classification , Proteins/genetics , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Small Nuclear/classification , RNA, Small Nuclear/genetics , RNA, Transfer/classification , RNA, Transfer/genetics , Whole Genome Sequencing
15.
RNA Biol ; 15(1): 95-103, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29099311

ABSTRACT

Small RNAs (sRNAs) in bacteria have emerged as key players in transcriptional and post-transcriptional regulation of gene expression. Here, we present a statistical analysis of different sequence- and structure-related features of bacterial sRNAs to identify the descriptors that could discriminate sRNAs from other bacterial RNAs. We investigated a comprehensive and heterogeneous collection of 816 sRNAs, identified by northern blotting across 33 bacterial species and compared their various features with other classes of bacterial RNAs, such as tRNAs, rRNAs and mRNAs. We observed that sRNAs differed significantly from the rest with respect to G+C composition, normalized minimum free energy of folding, motif frequency and several RNA-folding parameters like base-pairing propensity, Shannon entropy and base-pair distance. Based on the selected features, we developed a predictive model using Random Forests (RF) method to classify the above four classes of RNAs. Our model displayed an overall predictive accuracy of 89.5%. These findings would help to differentiate bacterial sRNAs from other RNAs and further promote prediction of novel sRNAs in different bacterial species.


Subject(s)
RNA, Messenger/genetics , RNA, Ribosomal/genetics , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , Bacteria/genetics , Base Composition/genetics , Base Pairing , Gene Expression Regulation, Bacterial , RNA, Bacterial/classification , RNA, Bacterial/genetics , RNA, Messenger/classification , RNA, Ribosomal/classification , RNA, Small Untranslated/classification , RNA, Transfer/classification
16.
Nature ; 551(7681): 472-477, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29143818

ABSTRACT

Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.


Subject(s)
Cryoelectron Microscopy , RNA, Ribosomal/chemistry , RNA, Ribosomal/ultrastructure , Ribosomes/chemistry , Ribosomes/ultrastructure , Binding Sites , Epistasis, Genetic , HeLa Cells , Humans , Ligands , Models, Molecular , RNA Stability , RNA, Ribosomal/biosynthesis , RNA, Ribosomal/classification , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Ribosomes/drug effects , Ribosomes/genetics
17.
Mol Phylogenet Evol ; 115: 181-189, 2017 10.
Article in English | MEDLINE | ID: mdl-28782594

ABSTRACT

Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms.


Subject(s)
Anthozoa/classification , Mitochondria/genetics , Animals , Anthozoa/genetics , Biological Evolution , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Genetic Variation , Mitochondrial Proton-Translocating ATPases/classification , Mitochondrial Proton-Translocating ATPases/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Sequence Analysis, DNA
18.
Mol Phylogenet Evol ; 114: 234-248, 2017 09.
Article in English | MEDLINE | ID: mdl-28666786

ABSTRACT

Placobdella is a genus of blood-feeding leeches in the family Glossiphoniidae. Historically, species of Placobdella have posed difficulty for systematists owing to a lack of informative morphological characters and the preponderance of inadequate or incomplete species descriptions. Here, we conduct a phylogenetic analysis of 55 individuals representing 20 of the 24 currently recognized nominal taxa using COI, ND1, 12S rDNA and ITS sequences under parsimony, maximum likelihood and Bayesian inference. We also examine the isolated COI phylogeny for the genus using an expanded dataset encompassing three additional species not included in the concatenated dataset. Finally, we assess genetic variation at the COI locus to validate initial specimen identifications and estimate how COI variation may reflect species boundaries. We conclude that Placobdella is a monophyletic group that places as the sister group to a clade formed by the genera Haementeria and Helobdella. We discuss the evolutionary implications of several internal relationships that are robustly resolved by all three optimality criteria, paying particular attention to the apparent fluidity of morphological characters exhibited by members of Placobdella. We also find preliminary evidence for the presence of cryptic and undescribed diversity within the genus.


Subject(s)
Leeches/classification , Animals , Bayes Theorem , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Genetic Variation , Leeches/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Sequence Analysis, DNA
19.
Mol Phylogenet Evol ; 115: 171-180, 2017 10.
Article in English | MEDLINE | ID: mdl-28756134

ABSTRACT

Caridean shrimps constitute one of the most diverse groups of decapod crustaceans, notwithstanding their poorly resolved infraordinal relationships. One of the systematically controversial families in Caridea is the predominantly pelagic Pasiphaeidae, comprises 101 species in seven genera. Pasiphaeidae species exhibit high morphological disparity, as well as ecological niche width, inhabiting shallow to very deep waters (>4000m). The present work presents the first molecular phylogeny of the family, based on a combined dataset of six mitochondrial and nuclear gene markers (12S rDNA, 16S rDNA, histone 3, sodium-potassium ATPase α-subunit, enolase and ATP synthase ß-subunit) from 33 species belonged to six genera of Pasiphaeidae with 19 species from 12 other caridean families as outgroup taxa. Maximum likelihood and Bayesian inference analyses conducted on the concatenated dataset of 2265bp suggest the family Pasiphaeidae is not monophyletic, with Psathyrocaris more closely related to other carideans than to the other five pasiphaeid genera included in this analysis. Leptochela occupies a sister position to the remaining genera and is genetically quite distant from them. At the generic level, the analysis supports the monophyly of Pasiphaea, Leptochela and Psathyrocaris, while Eupasiphae is shown to be paraphyletic, closely related to Parapasiphae and Glyphus. The present molecular result strongly implies that certain morphological characters used in the present systematic delineation within Pasiphaeidae may not be synapomorphies and the classification within the family needs to be urgently revised.


Subject(s)
Decapoda/classification , Animals , Bayes Theorem , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Decapoda/genetics , Histones/classification , Histones/genetics , Mitochondrial Proton-Translocating ATPases/classification , Mitochondrial Proton-Translocating ATPases/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Mol Phylogenet Evol ; 114: 382-385, 2017 09.
Article in English | MEDLINE | ID: mdl-28647619

ABSTRACT

This study presents a multi-gene phylogenetic analysis of the Achatinoidea and provides an initial basis for a taxonomic re-evaluation of family level groups within the superfamily. A total of 5028 nucleotides from the nuclear rRNA, actin and histone 3 genes and the 1st and 2nd codon positions of the mitochondrial cytochrome c oxidase subunit I gene were sequenced from 24 species, representing six currently recognised families. Results from maximum likelihood, neighbour joining, maximum parsimony and Bayesian inference trees revealed that, of currently recognised families, only the Achatinidae are monophyletic. For the Ferussaciidae, Ferussacia folliculus fell separately to Cecilioides gokweanus and formed a sister taxon to the rest of the Achatinoidea. For the Coeliaxidae, Coeliaxis blandii and Pyrgina umbilicata did not group together. The Subulinidae was not resolved, with some subulinids clustering with the Coeliaxidae and Thyrophorellidae. Three subfamilies currently included within the Subulinidae based on current taxonomy likewise did not form monophyletic groups.


Subject(s)
Gastropoda/classification , Actins/classification , Actins/genetics , Animals , Bayes Theorem , Codon , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Gastropoda/genetics , Histones/classification , Histones/genetics , Phylogeny , RNA, Ribosomal/classification , RNA, Ribosomal/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...